STAR-Dundee at DASIA and UK Space Conference 2017

STAR-Dundee at UK Space Conference

This week STAR-Dundee will be attending Data Systems in Aerospace (DASIA), Gothenburg and the UK Space Conference, Manchester. 

STAR-Dundee at DASIA

STAR-Dundee are attending DASIA from the 30th May to the 1st June, where we will be demonstrating the SpaceFibre Multi-Lane interface implemented in the radiation-tolerant Microsemi RTG4 FPGA as well as the SpaceFibre Router PXI card. We’ll also be demonstrating the new STAR Fire Mk3 hardware and SpaceFibre link analysis software.

Our CEO Steve Parkes will present on SpaceFibre: Capabilities, Components and Kit on Wednesday the 31st of May at 10:30 (CEST) in room B.

For the full programme please visit: http://eurospace.org/dasia-2017.aspx

STAR-Dundee at the UK Space Conference 

STAR-Dundee are attending the UK Space Conference 2017 from the 30th May to the 1st June, where we will be available at booth B15 in the exhibition area. From here we will be demonstrating our SpaceWire and SpaceFibre equipment including our new STAR Fire Mk3 unit. 

The STAR Fire Mk3 can transmit and receive SpaceWire and SpaceFibre traffic and is also a SpaceFibre Link Analyser. SpaceFibre traffic can be transmitted and received either from a host PC or using built-in advanced data generators and checkers. Powerful software allows SpaceFibre traffic captured by the STAR Fire Mk3 to be displayed in multiple views with varying levels of detail. As SpaceFibre is compatible with SpaceWire at the network level, the STAR Fire Mk3 can also be used to transmit and receive SpaceWire traffic over a SpaceFibre link.

More information on the UK Space Conference 2017 is available here: www.ukspace.org/event/uk-space-conference-2017

PANGU at GNC 2017

The University of Dundee will be exhibiting PANGU – Planet and Asteroid Natural Scene Generation Utility at the 10th International ESA Conference on Guidance, Navigation & Control Systems between 29th May to the 2nd June 2017 in Salzburg, Austria.

Find out more about PANGU here: https://www.star-dundee.com/products/pangu-planet-and-asteroid-natural-scene-generation-utility

 

SpaceFibre Multi-Laning Premiered at DASIA 2016

Demonstration of multi-laning at DASIA 2016

STAR-Dundee has demonstrated the advanced multi-laning capabilities of the SpaceFibre protocol. This allows several lanes to operate in parallel to provide enhanced throughput. For example, with four lanes running at 2.5 Gbits/s each and aggregate throughput of 10 Gbits/s is achieved. SpaceFibre multi-laning can operate with any number of lanes, from 1 to 16. Each lane is normally bi-directional, but to support spaceflight instruments with very high-data rate in one direction and to save mass and power, it is possible to have some uni-directional lanes in a multi-lane link, provided that at least one lane is bi-directional. SpaceFibre multi-laning also supports graceful degradation in the event of a lane failure. If a lane fails, the multi-lane link will rapidly reconfigure to use the remaining lanes so that important (high priority) information can still get through. It takes a couple of microseconds for this reconfiguration to occur, which happens without loss of information. Clearly, with reduced bandwidth some information will not be sent over the link, but this will be less important, low priority, information. If a redundant lane is available in the link, it can be enabled and full capacity operation will resume. SpaceFibre IP cores and test equipment are available from STAR-Dundee. The SpaceFibre ECSS standard is due to be published by the end of 2016.

The photograph shows multi-laning capability of SpaceFibre being demonstrated to spacecraft engineers at the DASIA 2016 conference held in May in Tallinn, Estonia. A four lane link was demonstrated with low priority high bandwidth traffic flowing over some virtual channels and high priority video data over another virtual channel. Lanes were unplugged with corresponding loss in bandwidth, but the link continued to operate sending the “critical” video data without interruption. Only when all four lanes were unplugged, did the video data stream cease. As soon as any of the four lanes were plugged back in, the video stream continued once more.